terça-feira, 14 de maio de 2013

Queda Livre


No estudo de física a queda livre é uma particularização do movimento uniformemente variado (MRUV). O movimento de queda livre foi estudado primeiramente por Aristóteles. Ele foi um grande filósofo grego que viveu aproximadamente 300 a.C. Aristóteles afirmava que se duas pedras caíssem de uma mesma altura, a mais pesada atingiria o solo primeiro. Tal afirmação foi aceita durante vários séculos tanto por Aristóteles quanto por seus seguidores, pois não tiveram a preocupação de verificar tal afirmação.

Séculos mais tarde, mais precisamente no século XVII, um famoso físico e astrônomo italiano chamado Galileu Galilei, introduziu o método experimental e acabou por descobrir que o que Aristóteles havia dito não se verificava na prática. Considerado o pai da experimentação, Galileu acreditava que qualquer afirmativa só poderia ser confirmada após a realização de experimentos e a sua comprovação. No seu experimento mais famoso ele, Galileu Galilei, repetiu o feito de Aristóteles. Estando na Torre de Pisa, abandonou ao mesmo tempo esferas de mesmo peso e verificou que elas chegavam ao solo no mesmo instante. Por fazer grandes descobertas e pregar idéias revolucionárias ele chegou a ser perseguido.

Quando Galileu realizou o experimento na Torre de Pisa e fez a confirmação de que Aristóteles estava errado, ele percebeu que existia a ação de uma força que retardava o movimento do corpo. Assim sendo, ele lançou a hipótese de que o ar exercesse grande influência sobre a queda de corpos.

Quando dois corpos quaisquer são abandonados, no vácuo ou no ar com resistência desprezível, da mesma altura, o tempo de queda é o mesmo para ambos, mesmo que eles possuam pesos diferentes. 
O movimento de queda livre, como já foi dito, é uma particularidade do movimento uniformemente variado. Sendo assim, trata-se de um movimento acelerado, fato esse que o próprio Galileu conseguiu provar. Esse movimento sofre a ação da aceleração da gravidade, aceleração essa que é representada por g e é variável para cada ponto da superfície da Terra. Porém para o estudo de Física, e desprezando a resistência do ar, seu valor é constante e aproximadamente igual a 9,8 m/s2.

As equações matemáticas que determinam o movimento de queda livre são as seguintes:


Lorena Sales 

Movimentos





Julia Lais

Trabalho de Física em Power Point




segunda-feira, 13 de maio de 2013

Mecânica


A parte da Física que estuda os movimentos dos corpos e seu repouso
A parte da Física que estuda os movimentos dos corpos e seu repouso
Mecânica é a parte da Física que estuda os movimentos dos corpos e seu repouso. Não é de hoje que o homem procura explicações para os fenômenos ocorridos na natureza, essa busca vem desde a Antiguidade, principalmente no que diz respeito à explicação para os movimentos que os corpos executam. Talvez por isso, a mecânica seja o ramo de estudo mais antigo da Física. Homens famosos como Aristóteles, Galileu e Ptolomeu foram alguns dos muitos cientistas que estiveram na busca por explicações sobre os movimentos, além de serem os responsáveis pelo estabelecimento de muitas das leis que hoje conhecemos.

A mecânica em si estuda os seguintes movimentos:
  • Movimento uniforme e uniformemente variado;
  • Movimento circular;
  • Lançamento vertical e oblíquo.
Ela, além de estudar esses movimentos que acontecem diariamente, busca a explicação para as suas ocorrências, fazendo análises das forças que atuam sobre os corpos em repouso ou em movimento. Essa é a dinâmica, uma parte da mecânica que tem como principal estudo a explicação de como um corpo em repouso é capaz de entrar em movimento e como é possível alterar o estado de movimento de um corpo.

Para o desenvolvimento do estudo da mecânica, bem como o de todas as outras áreas de estudo, é necessário ter o domínio dos conceitos de vetor e suas características (módulo, direção e sentido) e a compreensão e diferenciação entre grandezas escalares e vetoriais.

Lorena Sales .

Movimento Linear.

momento linear  é uma das duas grandezas físicas fundamentais necessárias à correta descrição do inter-relacionamento (sempre mútuo) entre dois entes ou sistemas físicos. A segunda grandeza é a energia. Os entes ou sistemas em interação trocam energia e momento, mas o fazem de forma que ambas as grandezas sempre obedeçam à respectiva lei de conservação. é definido pelo produto da massa pela velocidadede um corpo. É uma grandeza vetorial, com direção e sentido, cujo módulo é o produto da massa pelo módulo da velocidade, e cuja direção e sentido são os mesmos da velocidade. A quantidade de movimento total de um conjunto de objetos permanece inalterada, a não ser que uma força externa seja exercida sobre o sistema. Esta propriedade foi percebida por Newton e publicada na obra Philosophiæ Naturalis Principia Mathematica, na qual Newton define a quantidade de movimento e demonstra a sua conservação.
Formulas : \vec{I} =  \vec{P} - \vec{P}_0 = \Delta \vec{P}.;  \vec{P} = t \vec{F} + \vec{P}_0,

Sistema mecânico:Diz-se que um sistema está mecanicamente isolado quando o somatório das forças externas é nulo.
Consideremos um casal patinando sobre uma pista de gelo, desprezando os efeitos do ar e as forças de atrito entre a pista e as botas que eles estão usando. Veja que na vertical, a força peso é equilibrada com a normal, ou seja P = N, tanto no homem quanto na mulher, e neste eixo as forças se cancelam. Mesmo que o casal resolva empurrar um ao outro (a terceira lei de Newton garante que o empurrão é sempre mútuo), não haverá força externa resultante uma vez que a força externa expressa a interação de um ente pertencente ao sistema com outro externo ao sistema: apesar de haver força resultante tanto no homem como sobre a mulher, ambos estão dentro do sistema em questão, e estas forças são forças internas ao mesmo. Na ausência de forças externas há conservação do momento linear do sistema. A conservação do momento linear permite calcular a razão entre a velocidade do homem e a velocidade da mulher após o empurrão, conhecidas as suas massas e velocidades iniciais: Como o momento total deve ser conservado, a variação da velocidade do homem é  V_{H}=-M_{M}/M_{H} V_{M} , onde  V_{M}  é a variação da velocidade da mulher.


Julia Lais'!

Escalas Termometricas


As escalas termométricas são definidas como mecanismos utilizados para medir a temperatura dos corpos.
O estado térmico de um corpo se eleva conforme se aumenta a velocidade de movimento das partículas presentes no mesmo. A medida desta alteração é o que conhecemos por temperatura. As escalas termométricas surgiram da necessidade de registrar e quantificar o quanto um corpo está quente ou frio.
Faça a comparação entre as três escalas de temperatura:

Ilustração das escalas de temperatura Celsius (tc), Fahrenheit (tf) e Kelvin (tk).
Talvez a escala Celsius lhe seja a única familiar, uma vez que é a mais popular. As escalas Kelvin e Fahrenheit são mais usadas no mundo científico.
O interessante seria fazer uma comparação: repare que o ponto de fusão se difere nas três escalas: Celsius (0°C), Fahrenheit (32°F) e Kelvin (273K).
Observe que o mesmo ocorre com o ponto de ebulição: Celsius (100°C), Fahrenheit (212°F) e Kelvin (373K).
Como surgiu cada uma dessas escalas? Para entender, vamos recorrer a um pouco de história:
Escala Celsius: foi elaborada em 1742 pelo astrônomo sueco Anders Celsius (1701-1744). Ele estabeleceu pontos fixos da sua escala como sendo os pontos de fusão do gelo (0°C) e de ebulição da água (100°C).
Escala Fahrenheit: foi criada a partir dos estudos realizados por Daniel Gabriel Fahrenheit (1686-1736), por volta de 1742. É a escala mais utilizada nos países de língua inglesa. Ele determinou que água vira gelo a uma temperatura de 32°F e ferve a uma temperatura de 212°F.
Escala Kelvin: teve origem dos princípios estabelecidos por Lord Kelvin (1824-1907), físico de origem irlandesa, que atribuiu o zero absoluto da sua escala como sendo igual a -273°C na escala Celsius.


Herionara Lima

Física Aula 23 Mecânica Introdução à cinemática velocidade escalar .

http://www.youtube.com/watch?v=UJQCiE-5SSE